计算机系统 I 作业 part1¶
Question
a)
b)
c)
d)
e)
也可以根据逻辑代数公式直接化简
Question
prime implicants : \(XZ, \bar X \bar Z, WX, W \bar Z\)
essential prime implicants : \(XZ, \bar X \bar Z\)
Question
Question
b)
prime implicants : \(XZ, \bar X \bar Z, \bar WX\bar Y, \bar W\bar Y\bar Z, WXY, WY\bar Z\)
essential prime implicants : \(XZ, \bar X \bar Z\)
Question
\(X = A\)
\(X = B\)
Question
Question
- 3.28
- 3.29
Question
可以转化成判断 \(A+(2^4-1-B)+1\) 是否有进位,我们可以只需要 Adder 中的 Cout 来完成
\(A<B \to O = 0\) \(A\geq B \to O = 1\)
Question
- 3.20 :
0x0C000000 = 0000 1100 0000 0000 0000 0000 0000 0000
two's complement interger = \(2^{26}\times 3\) = 201326592
unsigned interger = \(2^{26}\times 3\) = 201326592
- 3.21 :
不会 MIPS
- 3.22 :
0x0C000000 = 0000 1100 0000 0000 0000 0000 0000 0000
IEEE 754 single : 1 sign + 8 exponent + 23 fractions
\((-1)^0 \times (1 + \text{0}) \times 2 ^ {\overline{00011000}\text{ - 127}} = 1 \times 2^{-103}\)
- 3.23 :
single : 1 sign + 8 exponent + 23 fractions, bias = 127
\(5 + 127 = (10000100)_2\)
- 3.24 :
double : 1 sign + 11 exponent + 52 fractions, bias = 1023
\(5 + 1023 = (10000000100)_2\)
- 3.27 :
half precision : 1 sign + 5 exponent + 10 fractions, bias = 15
\(-1.5625\times 10^{-1} = -0.15625 = (-1) \times (0.00101) = (-1) \times (1.01) \times (2^{-11})\)
\(-3 + 15 = (01100)_2\)
32-bit has larger range and presion than 16-bit.
Question
D(t) | X | Y | D(t+1) | S |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
graph LR
0[0] --> |00/0, 11/0| 0[0]
0[0] --> |01/1, 10/1| 1[1]
1[1] --> |00/1, 11/1| 1[1]
1[1] --> |01/0, 10/0| 0[0]
Question
Question
a)
b) 待补充
Question
- Ripple Counter
- Synchronous Counter
待补充
Question
Question
a) \(t_a=2t_{XOR-pd}=0.08\text{ns}\)
b) \(t_b=t_{XOR-pd}+t_{Inv-pd}+T_s=0.07\text{ns}\)
c) \(t_c=t_{FlipFlop-pd}+2t_{XOR-pd}=0.16\text{ns}\)
d) \(t_d=t_{FlipFlop-pd}+t_{XOR-pd}+t_{Inv-pd}+T_s=0.15\text{ns}\)
e) \(\text{Clock frequency} = \frac{1}{t_d} = 6667 \text{MHz}\)