含参量积分¶
1. 含参量正常积分¶
-
含参量积分: \(F(x) = \int_{c(x)}^{d(x)} f(x, y)\,dy\)
-
含参量积分性质:
- 连续性:若 \(f(x, y)\) 在区域 \(G=\{(x, y)|c(x)\leq y \leq d(x), a\leq x \leq b\}\) 上连续,则函数
\[F(x)=\int_{c(x)}^{d(x)} f(x, y)\,dy\]在 \([a, b]\) 上连续
其在矩形上等价于
\[\lim_{x\to x_0}\int_{c}^{d} f(x, y)\,dy=\int_{c}^{d} \lim_{x\to x_0}f(x, y)\,dy\]- 可导性:若 \(f(x, y), f_1'(x, y)\) 在 \(R = [a, b] \times [p, q]\) 上连续, \(c(x), d(x)\) 为定义在 \([a, b]\) 上值含于 \([p, q]\) 内的可微函数,则
\[F(x)=\int_{c(x)}^{d(x)} f(x, y)\,dy\]在 \([a, b]\) 上可导,且
\[F'(x)=\int_{c(x)}^{d(x)} f_1'(x, y)\,dy + f(x, d(x))d'(x) - f(x, c(x))c'(x)\]- 可积性:若 \(f(x, y), f_1'(x, y)\) 在 \(R = [a, b] \times [c, d]\) 上连续,则
\[\varphi(x)=\int_{c}^{d} f(x, y)\,dy\]\[\phi(y)=\int_{a}^{b} f(x, y)\,dx\]分别在 \([a, b], [c, d]\) 上可积,且积分值相等